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Cancerous tumor: The high frequency of a rare event
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A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-
dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step,
local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local
rules, which are independent of the overall cancerous cell density. The models unique ingredients are the
frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an
initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The
associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias
distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to
happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after
some age, survival from tumorous cancer becomes random.
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[. INTRODUCTION may lead a small cancerous tumor to either an explosive
growth or a complete remission. In other words we study the
In the past decades a tremendous amount of experimentdynamics associated with a rare event within a given frame-
effort has been devoted to the study of cancerous tumorgvork [6,7]. Although naive, the model might provide some
There have been also many attempts to provide some kind dﬂlSlgntS into the Understanding of the dynamics involved in a
an abstract model. However, theoretical work is difficult duereal biological process.
to the highly complex biological mechanisms involvied. The outline of this paper is as follows. The model is pre-
Modeling usually requires rather drastic oversimplifications,sented in Sec. Il together with the rules governing the dy-
necessary in order to derive any analytical solution for thexamics. In Sec. Il we give details of simulations, and in Sec.
proposed mathematical equations at hand. Not long agd results are presented. Conclusions are given in Sec. V.
complex numerical simulations of cancer spreading, and also
of possible immunity, have been attemp{eq3]. Very re-
cently the concept of a phase transition was used to repro-
duce some qualitative features of cancer dynaf#¢:sHow- Let us start from a two-dimensional square lattice system,
ever, at this stage, while substantial progress has beanith periodic boundary conditions. Initially, at every node
accomplished in the medical treatment of the illness, the conthere is a healthy cell. During the system evolution all cells
ditions for the appearance, along with the associated spreadiffuse randomly on this grid, by moving to one of the near-
ing dynamics, of a cancerous tumor still resist an overallest neighbor sites, under only the constraint of preserving
explanation. Indeed, a thorough theoretical understanding ane cell per node. There are many ways to model a physical
tumor dynamics is as yet lackiri&]. diffusion of cells. One could be by introducing empty sites
In this work, somewhat at odds with biological ap- on a lattice to facilitate the cell’s movement. However, in
proaches which focus on describing minute details of spetissue, cells are undergoing apoptosis and division all the
cific phenomena, we adopt a reductionist point of view. Thetime. In modeling, the death of any cell on a lattice would
goal is to provide a simple model which can embody somenean that at a given node there is an empty place. Thus a
basic features of a tumor spreading phenomena, althougfivision of any of the neighboring cells, producing two iden-
most of the biological components involved will not be in- tical daughter cells, has a chance to fill such a void. In effect,
cluded. any subsequent train of consecutive death and division
We do not claim any exact solution to the problem. In-events can randomly transport a functionally equivalent cell
stead we are presenting a model of the occurrence an any place on a lattice, allowing for both cell diffusion and
growth of cancer from an initial, very small, compact can-exchange. The diffusive dynamics is monitored by nearest
cerous cluster within a healthy system. A simple, localneighbor pair exchanges.
mechanism is suggested to describe the conditions which One simulation cycle corresponds to an exchange of all
cells within a full lattice coverage. In parallel, at each time
unit, we attach a very low individual probability for a healthy
*Laboratoire associau CNRS(UMR No. 7603. Email address:  cell to spontaneously turn cancerous. While there seems to
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nism by which this might happen does not concern us herea new species has to start from above some critical threshold

We just account for it existence. of the overall population density, which can vary between
The probability of such an event can be as low as, forl0% and 23%, depending ¢nRecently, in the same model

instance,p= 106 per unit of time. As soon as a cancerous but at one dimension, it was shown that, even at zero density,

cell appears, it starts to diffuse in exactly the same way athere exist some compact clusters which lead to the final

healthy cells do. In a tissue, cancerous and healthy cells ivercoming of the indigenous species.

teract via a very complex system of biological mechanisms.

One of the best understood is, e.g., competition for nutrients . SIMULATION

[4]; however, there are many others. To embody part of the

biological and chemical complexity which control the cancer From the local fight rules above, any isolated cancer cell
spreading, we make two assumptions. will eventually be destroyed, independently of the overall

(1) First, to account in the simplest possible way for thecancer cell density. Therefore, we focus on the dynamics and
interactions whose outcome governs tumor growth dynamthe final fate of the smallest possible initial cancerous clus-
ics, we introduce local fights between four neighboring cellster, i.e., two nearest neighbor cells.

This is an arbitrary choice, to illustrate the model most We now describe the simulation. First a two-cell cancer-
clearly, the qualitative results do not depend on this. How-0us cluster is randomly placegither horizontally, verti-
ever, the existence of even configuratighso healthy cells ~ cally, or diagonally on a system grid. The whole ranges of
against two cancerous cellis instrumental in monitoring Pothkandg are systematically explored by repetitively per-
the richness and fragility of real interactions. We assume théorming the following steps.

fighting not to be systematic. It does not occur everywhere, For a givenN XN lattice we randomly choose a node. At
and at each diffusive step. The frequency of fights is coneach time cycle this choice predefines a fixed grid a2
trolled by the parametek, which defines, at each time step, tiles, giving (N/2)<(N/2) four-cell neighborhoods. Due to
the probability of a local fight to occur on a particular node.randomness, at each cycle this tilling is different. Then, in
That is, cells of any given neighborhood will either diffuse or accordance with current values &f k, and g8, a fight or
fight depending on the current value kgfwhich is stochas- diffusion takes place for this specific neighborhood, which is
tically controlled. Therefore, a local fight occurs with a prob- subsequently marked as visited.

ability k, or diffusion occurs with a probability 2 k. When Next, again randomly, another node is selected, and so on,
there is one different cell and three identical ones, a simpl&intil all neighborhoods have been visited. The whole se-
majority rule is used—all four cells become identical. Such aquence is then repeated until all nodes on the lattice are
choice produces a definite advantage for a current cell megither healthy or all are tumorous. The number of time cycles
jority. necessary to reach one of these two final states is stored,

(2) To account for some local defficiency of the organism,together with the corresponding valueslofind 8. As the
as well as its current, overall state of stress, some very smalilling scheme adopted here is somewhat arbitrary, we have
qualitative advantage may be given to cancerous cells whealso performed other simulations with different four-cell
an even configuration of cells occutsio against two, atie  neighborhood topologies, but the qualitative results obtained
To implement this effect, we define a local bias, controlledwere always very similar.
by another paramete, which can vary from—1 to 1.

Then, in a tie situation, the outcome of a fight becomes V. RESULTS
probabilistic. Two regimes are considered.

(a) The unfair regime. For the unfair regime only cancer- At first sight, although cancerous cells are produced at
ous cells might have a probabilistic advantage in the case afome given, but rather low, ratéor instancep=10"°), they
a tie. We pick a random numbér For a fixed value of3, if ~ do no harm at all, being systematically neutralized—in both
d<p the cancerous cells win. Otherwise nothing happenssimulation regimes, fair and unfair. Fight rules imply that, in
Indeed healthy cells win only when they have a majority,order to have a chance to win a single local fight, the can-
i.e., three against one. In contrast, cancerous cells also win aerous cells must form at least a packed cluster of (tvear-
two against two, but with probability. est neighborscells.

(b) The fair regime. In the fair regime the case of a tieis Having a probabilityp— 0 to obtain one cancerous cell,
decided either in favor of the healthy cells or the canceroushe probability to obtain two adjacent £, a much smaller
cells according to another probabilistic rule. Here, for a ranvalue of 10 12 However, it is worth stressing that in a living
dom numbers< g, the cancerous cells win, while fof  organism, the number of cells can be aboui. Ilhis will
> 3 the opposite is true. In the relatively rare ca$e 8,  result, on an average, in the probability to form a two-cell
nothing happens; that is, a tie situation is propagated to theluster of 10°3. Now, in one year there are>x310" or so
next time step with no change of the sick to healthy cellseconds. Making one diffusive step associated with one sec-
ratio. In other words, the fair regime is symmetric with re- ond, for 30 years there will be f@liffusive steps, resulting,
spect to the bias, while the unfair regime slightly favors can-again on an average, in 48uch clusters.
cerous growth. Therefore, we may assume that over an adult life span, the

A similar model was previously used to study the emer-probabity of obtaining one two-cell cancerous cluster is a
gence dynamics of new specigs]; however, the bias was rather certain event. This corroborates the empirical observa-
deterministic and always in favor of a minority. To survive, tion that most often cancerous tumors are detected at adult or
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FIG. 1. Probability isolines for survival in the fair regime at
(from top) 0.75(dashed line, diamonyis0.90(dotted line, squares

0.99 (dot-dashed line, circlesand 0.999solid line, dots. sono
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should conversely “favor” diffusion over fights.

Systematic results of our simulation are shown in Figs. 1
and 2 for fair and unfair regimes, respectively. The whole
ranges of 6<k<1 and—1<pB<+1 are explored. For each
pair of parameterk and 8, we runM = 1000 simulations in

both regimes, fair and unfair, counting how many times the i 3. Number of the time cycles necessary to arrive at one of
two-cell starting cancerous cluster wins over the whole systne two final states in the fair regiméa) a completely healthy

tem. The sum of such victories, divided iy, gives the

associated probability for an organism to die.
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FIG. 2. Probability isolines for survival in the unfair regime at
(from top) 0.75(dashed line, diamongs0.90(dotted line, squares

0.99 (dot-dashed line, circlgsand 0.999solid line, dot$.

system, andb) a completely tumorous system.

From a set of points sharing the same value it is possible
to interpolate the probability. Our figures show the probabil-
ity isolines at 0.75, 0.90, 0.99, and 0.999, obtained as an
exponential-linear fit[ f(expk))=a*x+b] for respective
sets of points sharing a given probability. Although the
change of conditions from fair regime to the unfair regime is
rather slight, it nevertheless produces striking differericés
Figs. 1 and 2 It can be seen that in the fair case, cancerous
cells always fail with a probability 1 fo<<0. This is not the
case for the unfair regime.

If, instead of a two-cell starting cluster, the initial size was
increased to three or four cells, the corresponding probability
isolines are all shifted diagonally toward smaller values of
both k and 8. As the observed changes are of only a quan-
titative nature, and the direction of such a shift is intuitively
obvious, we do not describe them here in more detail.

We also calculated the number of time cycles necessary to
arrive at a final, stable state, either a totally healthy one or a
dead one. The associated three-dimensional phase diagrams
are shown in Figs. &air regime and 4(unfair ong. In cases
when the tumor completely overwhelms the systgfigs.
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the fair regime, the number of time cycles leading to any
of the two final states decays roughly symmetrically on
both sides of the border line. Such a symmetry is missing,
however, in the corresponding plot of dying systems
[cf. Fig. b)]. Thus, for a system almost wholy dominated
by tumorous cells, it may be enough to shift valuek of 8
very slightly in order to arrive at a completely different
outcome.
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V. CONCLUSIONS

o, We have presented a simple diffusive model for a cancer-
ous tumor growth. The unique ingredients are biased local
fights and the frequency of these fights. While each indi-
. vidual cancerous cell is eventually destroyed, the occurrence
(@) « o of a two-cell tumorous cluster was found to jeoperdize

chances of survival. Indeed the system capability to win be-
comes probabilistic. The associated full phase survival dia-
gram was obtained using large scale simulatiod (
=1000).

The very simple, naive model presented here shows that
tumor dynamics appear to be in a rather delicate equilibrium
during most of a tumors’ presence. For instance, a high value
of k turns out to have varying effect on cancer growth de-
pending on the initial tumor size.

In parallel, the effect of diffusion is also not linear. A high
diffusion rate acts against a cancerous tumor, and eventually
leads to its destruction only when the size is relatively small.
For a larger tumor, the same diffusion rate will produce an
enhancement of its growth. Moreover a few percentages of
randomly distributed sick cells have no chance to produce a
spreading tumor. On the opposite side, just one unique small
compact cluster may lead to an invading tumor.

In conclusion, our model should not be taken as a descrip-

FIG. 4. Number of the time cycles necessary to arrive at one otion of a real biological system, but rather as an oversimplied
the two final states in the unfair regim@) a completely healthy tool to mimic a complex dynamics of either the irreversible
system, andb) a completely tumorous system. spreading or the total remission of a cancerous tumor. At

this stage, we conclude that tumor spreading is of a
3(@ and 4a)], many more cycles are necessary than inmore probabilistic than chaotic character. Nevertheless, it is
the reverse situation of successful defer{$égs. 3b) worth stressing that a final outcome we observe for a given
and 4b)]. At the extreme(the lowk and highg regions, pair of fixed 8 andk values is of a somewhat static nature.
the isolated events of tumorous victory are not onlyHowever, in a real organism actual values of the associated
very improbable, but at the same time the ensuing ﬁghﬁ andk pairs are likely to fluctuate widely with time, due to
for survival is also an extremely long ore.g., as shown €.d., the general health of the whole system, the size of the
in Fig. 4(b), longest of all. For very small values ok, tumor, and many other factors. Thus this shifts the overall
when there is almost no diffusion, the time needed to recoveiumor dynamics more and more toward a chaotic behavior.
a completely healthy system is also rather long, and iffo study associated phenomena in more detail is our next
depends strikingly only slightly on thg value [Figs. 3a) goal.
and 4a)].
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