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Cancerous tumor: The high frequency of a rare event
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A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-
dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step,
local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local
rules, which are independent of the overall cancerous cell density. The models unique ingredients are the
frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an
initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The
associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias
distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to
happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after
some age, survival from tumorous cancer becomes random.
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I. INTRODUCTION

In the past decades a tremendous amount of experime
effort has been devoted to the study of cancerous tum
There have been also many attempts to provide some kin
an abstract model. However, theoretical work is difficult d
to the highly complex biological mechanisms involved@1#.
Modeling usually requires rather drastic oversimplificatio
necessary in order to derive any analytical solution for
proposed mathematical equations at hand. Not long a
complex numerical simulations of cancer spreading, and
of possible immunity, have been attempted@2,3#. Very re-
cently the concept of a phase transition was used to re
duce some qualitative features of cancer dynamics@4#. How-
ever, at this stage, while substantial progress has b
accomplished in the medical treatment of the illness, the c
ditions for the appearance, along with the associated spr
ing dynamics, of a cancerous tumor still resist an ove
explanation. Indeed, a thorough theoretical understandin
tumor dynamics is as yet lacking@5#.

In this work, somewhat at odds with biological a
proaches which focus on describing minute details of s
cific phenomena, we adopt a reductionist point of view. T
goal is to provide a simple model which can embody so
basic features of a tumor spreading phenomena, altho
most of the biological components involved will not be i
cluded.

We do not claim any exact solution to the problem. I
stead we are presenting a model of the occurrence
growth of cancer from an initial, very small, compact ca
cerous cluster within a healthy system. A simple, lo
mechanism is suggested to describe the conditions w
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may lead a small cancerous tumor to either an explos
growth or a complete remission. In other words we study
dynamics associated with a rare event within a given fram
work @6,7#. Although naive, the model might provide som
insights into the understanding of the dynamics involved i
real biological process.

The outline of this paper is as follows. The model is pr
sented in Sec. II together with the rules governing the
namics. In Sec. III we give details of simulations, and in S
IV results are presented. Conclusions are given in Sec. V

II. MODEL

Let us start from a two-dimensional square lattice syste
with periodic boundary conditions. Initially, at every nod
there is a healthy cell. During the system evolution all ce
diffuse randomly on this grid, by moving to one of the nea
est neighbor sites, under only the constraint of preserv
one cell per node. There are many ways to model a phys
diffusion of cells. One could be by introducing empty sit
on a lattice to facilitate the cell’s movement. However,
tissue, cells are undergoing apoptosis and division all
time. In modeling, the death of any cell on a lattice wou
mean that at a given node there is an empty place. Thu
division of any of the neighboring cells, producing two ide
tical daughter cells, has a chance to fill such a void. In effe
any subsequent train of consecutive death and divis
events can randomly transport a functionally equivalent c
to any place on a lattice, allowing for both cell diffusion an
exchange. The diffusive dynamics is monitored by near
neighbor pair exchanges.

One simulation cycle corresponds to an exchange of
cells within a full lattice coverage. In parallel, at each tim
unit, we attach a very low individual probability for a health
cell to spontaneously turn cancerous. While there seem
be a growing consensus about the mostly genetic backgro
for cancer origin at a single cell level, the detailed mech
©2001 The American Physical Society07-1
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nism by which this might happen does not concern us h
We just account for it existence.

The probability of such an event can be as low as,
instance,p51026 per unit of time. As soon as a cancero
cell appears, it starts to diffuse in exactly the same way
healthy cells do. In a tissue, cancerous and healthy cells
teract via a very complex system of biological mechanism
One of the best understood is, e.g., competition for nutrie
@4#; however, there are many others. To embody part of
biological and chemical complexity which control the canc
spreading, we make two assumptions.

~1! First, to account in the simplest possible way for t
interactions whose outcome governs tumor growth dyna
ics, we introduce local fights between four neighboring ce
This is an arbitrary choice, to illustrate the model mo
clearly, the qualitative results do not depend on this. Ho
ever, the existence of even configurations~two healthy cells
against two cancerous cells! is instrumental in monitoring
the richness and fragility of real interactions. We assume
fighting not to be systematic. It does not occur everywhe
and at each diffusive step. The frequency of fights is c
trolled by the parameterk, which defines, at each time ste
the probability of a local fight to occur on a particular nod
That is, cells of any given neighborhood will either diffuse
fight depending on the current value ofk, which is stochas-
tically controlled. Therefore, a local fight occurs with a pro
ability k, or diffusion occurs with a probability 12k. When
there is one different cell and three identical ones, a sim
majority rule is used—all four cells become identical. Suc
choice produces a definite advantage for a current cell
jority.

~2! To account for some local defficiency of the organis
as well as its current, overall state of stress, some very sm
qualitative advantage may be given to cancerous cells w
an even configuration of cells occurs~two against two, a tie!.
To implement this effect, we define a local bias, control
by another parameterb, which can vary from21 to 1.
Then, in a tie situation, the outcome of a fight becom
probabilistic. Two regimes are considered.

~a! The unfair regime. For the unfair regime only cance
ous cells might have a probabilistic advantage in the cas
a tie. We pick a random numberd. For a fixed value ofb, if
d<b the cancerous cells win. Otherwise nothing happe
Indeed healthy cells win only when they have a majori
i.e., three against one. In contrast, cancerous cells also w
two against two, but with probabilityb.

~b! The fair regime. In the fair regime the case of a tie
decided either in favor of the healthy cells or the cancer
cells according to another probabilistic rule. Here, for a r
dom numberd,b, the cancerous cells win, while ford
.b the opposite is true. In the relatively rare cased5b,
nothing happens; that is, a tie situation is propagated to
next time step with no change of the sick to healthy c
ratio. In other words, the fair regime is symmetric with r
spect to the bias, while the unfair regime slightly favors ca
cerous growth.

A similar model was previously used to study the em
gence dynamics of new species@8#; however, the bias was
deterministic and always in favor of a minority. To surviv
05190
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a new species has to start from above some critical thres
of the overall population density, which can vary betwe
10% and 23%, depending onk. Recently, in the same mode
but at one dimension, it was shown that, even at zero den
there exist some compact clusters which lead to the fi
overcoming of the indigenous species@9#.

III. SIMULATION

From the local fight rules above, any isolated cancer c
will eventually be destroyed, independently of the over
cancer cell density. Therefore, we focus on the dynamics
the final fate of the smallest possible initial cancerous cl
ter, i.e., two nearest neighbor cells.

We now describe the simulation. First a two-cell canc
ous cluster is randomly placed~either horizontally, verti-
cally, or diagonally! on a system grid. The whole ranges
bothk andb are systematically explored by repetitively pe
forming the following steps.

For a givenN3N lattice we randomly choose a node. A
each time cycle this choice predefines a fixed grid of 232
tiles, giving (N/2)3(N/2) four-cell neighborhoods. Due to
randomness, at each cycle this tilling is different. Then,
accordance with current values ofd, k, and b, a fight or
diffusion takes place for this specific neighborhood, which
subsequently marked as visited.

Next, again randomly, another node is selected, and so
until all neighborhoods have been visited. The whole
quence is then repeated until all nodes on the lattice
either healthy or all are tumorous. The number of time cyc
necessary to reach one of these two final states is sto
together with the corresponding values ofk and b. As the
tilling scheme adopted here is somewhat arbitrary, we h
also performed other simulations with different four-ce
neighborhood topologies, but the qualitative results obtai
were always very similar.

IV. RESULTS

At first sight, although cancerous cells are produced
some given, but rather low, rate~for instancep51026), they
do no harm at all, being systematically neutralized—in bo
simulation regimes, fair and unfair. Fight rules imply that,
order to have a chance to win a single local fight, the c
cerous cells must form at least a packed cluster of two~near-
est neighbors! cells.

Having a probabilityp→0 to obtain one cancerous cel
the probability to obtain two adjacent isp2, a much smaller
value of 10212. However, it is worth stressing that in a livin
organism, the number of cells can be about 109. This will
result, on an average, in the probability to form a two-c
cluster of 1023. Now, in one year there are 33107 or so
seconds. Making one diffusive step associated with one
ond, for 30 years there will be 109 diffusive steps, resulting
again on an average, in 106 such clusters.

Therefore, we may assume that over an adult life span,
probabity of obtaining one two-cell cancerous cluster is
rather certain event. This corroborates the empirical obse
tion that most often cancerous tumors are detected at adu
7-2
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older ages. On this basis, we now concentrate on the min
viable settings, i.e., starting from an initial cancerous tum
of two cells.

For such a cluster, the conditions for its growth are in
very subtle balance, depending on values of both parame
k andb. Obviously, the cancerous cells ‘‘benefit’’ from mor
aggressiveness than diffusion, while the healthy sys
should conversely ‘‘favor’’ diffusion over fights.

Systematic results of our simulation are shown in Figs
and 2 for fair and unfair regimes, respectively. The wh
ranges of 0,k<1 and21<b<11 are explored. For eac
pair of parametersk andb, we runM51000 simulations in
both regimes, fair and unfair, counting how many times
two-cell starting cancerous cluster wins over the whole s
tem. The sum of such victories, divided byM, gives the
associated probability for an organism to die.

FIG. 1. Probability isolines for survival in the fair regime
~from top! 0.75~dashed line, diamonds!, 0.90~dotted line, squares!,
0.99 ~dot-dashed line, circles!, and 0.999~solid line, dots!.

FIG. 2. Probability isolines for survival in the unfair regime
~from top! 0.75~dashed line, diamonds!, 0.90~dotted line, squares!,
0.99 ~dot-dashed line, circles!, and 0.999~solid line, dots!.
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From a set of points sharing the same value it is poss
to interpolate the probability. Our figures show the probab
ity isolines at 0.75, 0.90, 0.99, and 0.999, obtained as
exponential-linear fit@ f „exp(x)…[a* x1b# for respective
sets of points sharing a given probability. Although t
change of conditions from fair regime to the unfair regime
rather slight, it nevertheless produces striking differences~cf.
Figs. 1 and 2!. It can be seen that in the fair case, cancero
cells always fail with a probability 1 forb,0. This is not the
case for the unfair regime.

If, instead of a two-cell starting cluster, the initial size w
increased to three or four cells, the corresponding probab
isolines are all shifted diagonally toward smaller values
both k andb. As the observed changes are of only a qua
titative nature, and the direction of such a shift is intuitive
obvious, we do not describe them here in more detail.

We also calculated the number of time cycles necessar
arrive at a final, stable state, either a totally healthy one o
dead one. The associated three-dimensional phase diag
are shown in Figs. 3~fair regime! and 4~unfair one!. In cases
when the tumor completely overwhelms the system@Figs.

FIG. 3. Number of the time cycles necessary to arrive at one
the two final states in the fair regime:~a! a completely healthy
system, and~b! a completely tumorous system.
7-3
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3~a! and 4~a!#, many more cycles are necessary than
the reverse situation of successful defense@Figs. 3~b!
and 4~b!#. At the extreme~the low-k and high-b regions!,
the isolated events of tumorous victory are not on
very improbable, but at the same time the ensuing fi
for survival is also an extremely long one@e.g., as shown
in Fig. 4~b!, longest of all#. For very small values ofk,
when there is almost no diffusion, the time needed to reco
a completely healthy system is also rather long, and
depends strikingly only slightly on theb value @Figs. 3~a!
and 4~a!#.

A very interesting region lies at the border zone in
vicininty of the 0.999 probability line. If we conside
the number of time cycles necessary for complete remis
@e.g., Fig. 3~a!#, in this area, especially at the high valu
of diffusion and in the fair regime, there is a symmet
peak present. Due to the complete symmetry inheren

FIG. 4. Number of the time cycles necessary to arrive at one
the two final states in the unfair regime:~a! a completely healthy
system, and~b! a completely tumorous system.
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the fair regime, the number of time cycles leading to a
of the two final states decays roughly symmetrically
both sides of the border line. Such a symmetry is missi
however, in the corresponding plot of dying system
@cf. Fig. 3~b!#. Thus, for a system almost wholy dominate
by tumorous cells, it may be enough to shift values ofk or b
very slightly in order to arrive at a completely differen
outcome.

V. CONCLUSIONS

We have presented a simple diffusive model for a canc
ous tumor growth. The unique ingredients are biased lo
fights and the frequency of these fights. While each in
vidual cancerous cell is eventually destroyed, the occurre
of a two-cell tumorous cluster was found to jeoperdi
chances of survival. Indeed the system capability to win
comes probabilistic. The associated full phase survival d
gram was obtained using large scale simulationsM
51000).

The very simple, naive model presented here shows
tumor dynamics appear to be in a rather delicate equilibri
during most of a tumors’ presence. For instance, a high va
of k turns out to have varying effect on cancer growth d
pending on the initial tumor size.

In parallel, the effect of diffusion is also not linear. A hig
diffusion rate acts against a cancerous tumor, and eventu
leads to its destruction only when the size is relatively sm
For a larger tumor, the same diffusion rate will produce
enhancement of its growth. Moreover a few percentage
randomly distributed sick cells have no chance to produc
spreading tumor. On the opposite side, just one unique s
compact cluster may lead to an invading tumor.

In conclusion, our model should not be taken as a desc
tion of a real biological system, but rather as an oversimpl
tool to mimic a complex dynamics of either the irreversib
spreading or the total remission of a cancerous tumor.
this stage, we conclude that tumor spreading is of
more probabilistic than chaotic character. Nevertheless,
worth stressing that a final outcome we observe for a gi
pair of fixedb andk values is of a somewhat static natur
However, in a real organism actual values of the associa
b andk pairs are likely to fluctuate widely with time, due t
e.g., the general health of the whole system, the size of
tumor, and many other factors. Thus this shifts the ove
tumor dynamics more and more toward a chaotic behav
To study associated phenomena in more detail is our n
goal.
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